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ABSTRACT

Kernel methods provide a promising new family of algo-
rithms for machine learning and data mining applications.
In particular, kernel-based nonlinear classifiers such as sup-
port vector machines (SVMs) and kernel fisher discriminants
(KFDs) have been found to work well in practical problems.
In addition, there are methods for training these algorithms
on large-scale data sets making them very suitable for use
in data mining. In this paper, we evaluate the performance
of SVMs and KFDs on a dataset generated with a conduct-
ing polymer composite-based electronic nose. The ability
of SVM and KFD classifiers to correctly identify the func-
tional class (category) of a chemical based on its electronic
nose signature is evaluated and compared against other more
traditional methods, including nearest neighbors and linear
Fisher discriminants. Tradeoffs between the different ker-
nel methods and performance relative to more traditional
methods are discussed.
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1. INTRODUCTION

Arrays of polymer films embedded with conductive or resis-
tive material have attracted significant attention as “elec-
tronic noses.” Unlike traditional “lock-and-key” approaches
to vapor sensing, in which a detector is very specific to a par-
ticular analyte, the polymer-based detectors used here are
broadly-tuned so that a given detector responds to many
vapors and a single vapor causes a Iesponse in many de-
tectors. Only by analyzing the pattern of responses across
the array of detectors can specific analytes be identified or
discriminated from chemically similar compounds. As part
of an ongoing scientific research project between JPL and
Caltech [2], we have been studying the suitability of kernel-
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based methods for various classification tasks involving data
from the electronic nose. In this paper, new results using
support vector machines (SVMs) and kernel Fisher discrimi-
nants (KFD) to learn to predict the category (e.g., alcohol or
hydrocarbon) of a previously unseen (unsniffed?) chemical
are presented. We will discuss how these results illustrate
some of the practical decisions and tradeoffs required to ap-
ply SVM and KFD methods and contrast their performance
against other traditional methods (i.e. nearest-neighbors
and linear Fisher discriminants).

2. ELECTRONIC NOSE

The Caltech electronic nose consists of an array of poly-
mer films embedded with conductive or resistive material.
Sorption of a vapor into the polymer films causes physical
swelling, which leads to a change in the DC electrical resis-
tance of the film. The DC resistance across each of the films
in the array is sampled at approximately uniformly-spaced
sample times. The resistance values are digitized with an A-
to-D converter. For the experiments reported here, the raw
time-series data were converted to vector form by computing
the relative change in resistance in each channel compared
to the pre-exposure baseline. The raw time-series response
of the electronic nose to a given analyte thus becomes a d-
dimensional vector where d is the number of channels (poly-
mer films).

All analyte exposures were performed using a computer-
controlled vapor generation and control system that regu-
lates the identity, concentration, exposure time, and flow
rate of the analyte above the detectors [18]. Between expo-
sures, clean air is passed through the system to remove any
residue from the previous exposure. Analytes are presented
to the system in a randomized order to prevent biases in
the results. For a broad range of concentrations and ana-
lytes, the electronic nose arrays behave like a linear system.
Increasing or decreasing the concentration of an analyte pro-
duces a proportional increase or decrease in the signature,
and the response to mixtures of analytes is approximately
the weighted average of the response to the individual ana-
lytes [18].

An interesting study, which we have recently undertaken
(preliminary results using nearest neighbor classification ap-
peared in [2]), involves learning to classify analytes into the
appropriate functional group based on their electronic nose



signature. Five functional groups or chemical families (al-
cohols, alkyl halides, aromatics, hydrocarbons, and esters)
were used for our experiments. Within each class, 15 mem-
bers were chosen for a total of 75 different chemicals. These
were presented to an electronic nose containing 40 polymer-
based sensors (two copies of 20 different polymers). The
analytes were presented to the nose in groups of eight be-
cause the physical setup of the gas dispensation system has
eight bubblers. A total of 80 sniffs (ten of each analyte) in
randomized order was obtained from each set of eight and
then a new set of eight analytes was swapped in. Each group
of eight analytes contained two members of four classes so
that temporal effects would not bias the results (e.g., if all
alcohols were sniffed in the morning and the temperature
was cooler then, it might introduce an artificial bias into the
separability of alcohols from the other classes). Each sniff
produced a multivariate time series which was converted
to vector form. Responses of polymer “twins” (duplicates
of the same polymer type) were averaged to produce 20-
dimensional vectors for each sniff. This data was then used
by various kernel-based and traditional classification algo-
rithms in a leave-one-chemical-out (LCO) cross-valdiation.
Note that for a given test example, all other sniffs of the
same compound were sequestered from the training set. In
other words, we wanted to determine if a sniff of methanol
could be used to classify it as an alcohol without having
previously smelled methanol, but perhaps having smelled
ethanol, butanol, cyclopentanol, etc.

3. KERNEL METHODS

Recently, many traditional linear methods have been gen-
eralized to corresponding nonlinear forms using Mercer ker-
nels. Examples include Principal Component Analysis [17],
k-means clustering [16] nearest-neighbors [16], and Fisher
discriminants [13]. Further, completely new kernel-based
methods such as SVM classification [1] and SVM regression
[19] have been introduced.

Consider an £-by-D data matrix (X) of examples. A (Mer-
cer) kernel K(z;,z;) implicitly projects the two given ex-
amples from D-dimensional input space into some (possi-
bly infinite-dimensional) feature space and returns their dot
product in that feature space. That is, it computes

K(zi, z;) = ¢(x:) - ¢(x;) = ¢(w:) d(x;), (1)

for some mapping function ¢, but without explicitly com-
puting the coordinates of the projected vectors. In this way,
kernels allow large non-linear feature spaces to be explored
while avoiding the curse of dimensionality.

The simplest kernel is the linear kernel, implemented as a
simple dot product:

d
K(u,v):umEZui-vi. (2)

As explained later, kernel methods give the same results as
their traditional linear equivalents when linear kernels are
used, but will typically be much slower. This cost arises
from operating on some matrices of size £-by-£ that are only
of size D-by-D in traditional linear methods.

The polynomial kernel is defined by a non-linearly squashed

dot product of the following form:
K(u7 U) = (u-v+r)d, (3)

with polynomial degree parameter d. Varying the continu-
ous offset parameter r changes the relative weighting of the
(implicit) terms in the non-linear polynomial feature space.
We will refer to instances of this kernel as “POLY d r”.

One of the most popular kernels is the radial basis function
(RBF) kernel:

K(u,v) zeluﬁﬂﬁ, (4)

with variance parameter o, giving another non-linear squash
of the dot product of the two examples. ! We will refer to
instances of this kernel as “RBF g”, where g = 2—15

In this paper we will focus on two specific kernel methods,
SVMs and KFDs, as described below.

3.1 Support Vector Machine (SVM)

Given an {-by-f£ kernel matrix K (computed from the ¢-
by-D data matrix (X)), an {-by-1 labels vector (y), and a
“soft margin” regularization parameter (C' > 0), training a
binary SVM classifier traditionally consists of the following
Quadratic Programming (QP) dual formulation:

minimize:
¢ ¢ ¢
3 Dim Xy @iy K (mi, 25) ~ 31, o
subject to:
0<a; <C, Ef:l a;y; =0,

where { is the number of training examples, y; is the label
(+1 for positive example, -1 for negative) for the i-th train-
ing example (z;), and K(z;,z;) denotes the value of the
kernel function for i-th and j-th examples of X.

Note that once the kernel matrix is computed, the SVM
itself is independent of both the input dimensionality (D)
and the (implicit) feature dimensionality (in kernel space).
In this way, SVMs are said to overcome the curse of dimen-
sionality.

The vector of alphas « (of length £) is the solution to the
above QP problem. Of significant practical benefit is that
there are no local optima for this QP (unlike, say, neural
networks).

Widely-used decomposition methods, such as SMO [15] and
SV MU9ht 9], typically train SVMs (i.e. solve the above QP)
in roughly O(¢?) time and sub-quadratic space (by comput-
ing kernel elements only as required). In our experiments,
we use our own implementation [3] of SMO, based on [10].

The SVM output classification F(z), for any new example
z, can be computed as:

4
G(x) =Y ciyiK(z, ), (5)

i=1

'Where 2-norm defined as ||u —v||® = (v v —2u-v+v-v).



F(z) = sign(G(z) - b), (6)

The SVM weights (a) over the examples are often rather
sparse (typically roughly 5% — 20% are non-zero), making
the above output summations somewhat faster in practice
than shown above. The special examples x; for which 0 <
ai < C are called the support vectors (SVs). Retraining the
SVM using only the SVs would result in the same a solution.

Let SV represent the set of positive support vector ex-
amples and SV~ represent the set of negative SV exam-
ples. Similarly, define their corresponding “in-bounds” sub-
sets INtT and IN~, for which 0 < a; < C. As is common
practice, we compute the scalar bias (b) as midway between
the mean of G over INT and the mean of G over IN™.

A SVM maximizes the margin distance between the near-
est positive and negative examples (in kernel feature space),
which has been shown to lead to excellent generalization per-
formance in many domains [7], for much the same reasons
as the similar success of boosting methods [6].

3.2 Kernel Fisher Discriminant (KFD)

The classic linear Fisher discriminant (LFD) for binary clas-
sification [5] finds the projection weights (w) that map the
data X onto a line such that along that line within-class
variance is minimized while between-class variance is maxi-
mized.

3.2.1 LFD
Specifically, LFD maximizes the following score J:
!
mazimize: J(w) = g’_giﬂw‘ )

The between (Sp) and and within (Sw) components of J
are defined as:

Sp = (mT —m)(m" —m7), )
Sw = Z (zi—m )(zi—m™) + Z (i—m ) (zi—mt)',

r;€X™ z;eXxt
9)

m_:ei_ Z i, m+=gi+ Z zi, (10)

z;€EX— z;€XT

where

are the D-dimensional mean vectors for the negative (X ™)
and positive (X 1) examples, respectively.

The D-dimensional projection weights can be computed in
closed-form using:

w= Sy} (m~ —m"). (11)

The LFD classification f(z) for example z is given simply
by:

f(z) = sign(g(z) —b), (12)

where b is a threshold (typically determined on the assump-
tion that the class-conditional denisities of the projected
data are Gaussian).

9(z) = z'w,

3.2.2 KFD

By substituting ¢(z;) for each z; in LFD,, denoting each
resulting ¢(z:) - ¢(x;) term as kernel element K (z:,z;), and
using some algebraic simplifications, we get KFD (e.g. 12)):

. _d Zpa
mazimize: J(a)= o Zw o (13)
Zp =" —p ) -p7), (14)
Zw = KK’ (15)
where
= g pt = L g1 (16)
E_ ) e+ b

act like (/-dimensional) “mean” vectors 2 and K is the £-by-£
kernel matrix with elements:

K;; = k(xi,mj). an

The a are computed in closed-form (analogous to w in LFD):

a=Zy' (= —p). (18)

The projection weights in feature space themselves are then
given by:

£
W=> aip(x) (19)

i=1

The KFD classification F(z) for example z follows the same
form as for SVMs, except that «; is no longer restricted to
be non-negative and labels y: no longer appear:

£
G(z) = pla) W = Y _ aiK(z,21), (20)
=1

where W is the (implicit) weight vector in kernel feature
space, and

F(z) = sign(G(z) — b). (21)

For a linear kernel, the D-dimensional weights (w) of LFD
can be recovered, by “weight folding” KFD’s {-dimensional

(a):
4 [4
w= W= Zomﬁ(:cl) = Zale (22)
=1 i=1

This shows that KFD with the linear kernel gives the iden-
tical weights as LFD (but is much slower to train).

As in SVM’s, some form of regularization for KFD is re-
quired in practice. One common approach, which we em-
ploy in our experiments here, is to add some regularization
scalar to the diagonal of the Zw. This also prevents inver-
sion problems when Zw is nearly singular.

21+ is the £-by-1 vector which contains ones where the labels

vector y has 1’s and contains zeros elsewhere. 17 is similar,
but contains ones where target y has -1’s.



One remaining issue for KFD is how to compute the thresh-
old bias (b). One approach ([14]), which we employ here is
to train a linear SVM, using the projected KFD outputs as
(1-dimensional) training data, and use the bias computed
by the SVM. Other approaches are described in [12].

In contrast to SVMs, KFDs have recently been shown [12]
to roughly maximize the average margin, i.e. the distance
between the centers of the positive and negative data once
they are projected on the Fisher line.

4. CLASSIFICATION EXPERIMENTS
4.1 Nearest Neighbors

For baseline comparisons, we repeat here earlier results [2],
using 1-nearest-neighbors. The Euclidean distances of the
test example from all members of the reference library were
computed. The functional class label of the closest member
of the reference library was taken to be the class label of the
test example. For a given test ezample, all other sniffs of the
same compound were sequestered from the reference library.
In other words, we wanted to determine if a sniff of methanol
could be used to classify it as an alcohol without having
previously smelled methanol, but perhaps having smelled
ethanol, butanol, cyclopentanol, etc. A confusion matrix
showing the results of this experiment is given in Table 1.
The first row shows that all members of the alcohol family
were correctly classified as alcohols. The second row shows
that 83% of the members of the alkyl halide family were
correctly classified, with 6.9% of the members confused as
aromatics, 0.6% confused as hydrocarbons, and 9.4% con-
fused as esters. Overall, the average correct classification
percentage is 77%.

4.2 Handling Multiple Classes

There are several ways to handle multiple (k) classes (in our
case, k=five) using binary classifiers. The two that we have
explored can be described as “one-vs-rest” and “pair-wise
voting”.

In one-vs-rest, one learns k classifiers, each deciding if an
example is of that class or not. One decides which of the
k classes it is by finding which of the k classifiers has the
strongest positive output.

In pair-wise voting, one learns k(k—1)/2 classifiers, for each
pair-wise contest. If a single class unanimously wins all pair-
wise contests for an example versus each of the other £ — 1
classes, then its label is assigned to the example. If a unan-
imous decision cannot be reached, it is treated as a “punt”
(i.e. no classification is made).

Due to computational expense, to date we have only tried
one-vs-rest for our kernel methods. We have tried both ways
for LFD. The results are presented below.

4.3 Kernel Methods

Kernel methods require model selection to select appropriate
kernels — both type (e.g. polynomial vs RBF) and param-
eters (i.e. poly degree or RBF variance level). Ideally, one
would do model selection search (e.g. via cross-validation)
for each leave-one-chemical-out in our experiment. However,
current techniques make that too costly, especially for KDA

since no efficient model selection methods have yet been for-
mulated (see [4] and [11] for some recent methods for more
efficient SVM model selection).

Thus, we simply selected kernels for SVM and KFD based
on which worked well when randomly partitioning the data
set into training and validation sets. This is likely to be sub-
optimal, since we thus selected one kernel to use regardless
of which chemical class is being left out in turn in the final
test experiment,.

It is also possible that this approach is slightly contami-
nated, since some final test chemicals occur in training sets
during this process. However, we only did this model selec-
tion search to determine “reasonable” kernels to use. The
actual model weights in that feature space (e.g. the SVM’s
or KFD’s ) are trained in the final test experiments with
no knowledge of the hold-out chemicals.

Tables 2 and 3 show the results for the best kernel selected
for SVMs and KFDs, respectively.

Note that we found KFD worked best with the unnormal-
ized polynomial kernel (K(u,v) = (u - v + 10)®) whereas
SVM worked best with the normalized version: K(u,v) =
v v+ 1), where all u and v are 2-normed (unit length)
versions of the original data. This result is consistent with
observations made elsewhere that SVMs seem to work best
when feature vectors are normalized [8]. KFD apparently
does not benefit from such normalization, due to the way
Fisher discriminants use the covariance matrix explicitly.

The SVM appears to work significantly better. We be-
lieve part of the reason may be because one-versus-rest ap-
proaches to multi-class problems are not particularly suit-
able for Fisher discriminants. The next section shows that
indeed, at least for LFD, pair-wise classifiers seems to be
better than one-versus-rest. In fact, the one-vs-rest LFD
result shows that our KFD result is no better than that.

4.4 Linear Fisher Discriminants

Tables 4 and 5 show the results for the linear Fisher dis-
crimnation, using one-vs-rest and pairwise approaches, re-
spectively, on our multi-class classification problem.

5.  CONCLUSIONS

Our results show that kernel methods offer some promise for
challenging real-world tasks such as our chemical functional
class problem. However, we are still working on several
important issues. One is conducting more comprehensive
model selection to more accurately (and fairly) determine
the best kernels to use for each chemical hold-out experi-
ment. We are also studying the tradeoffs of one-vs-rest and
pair-wise approaches to multi-class problems such as ours.
And we are looking into the best way to use soft (probabilis-
tic) target labels. For example, scientists recently provided
us with fractional assignments of the chemicals to the five
groups. We suspect that the current ceiling of test perfor-
mance (near 85%) may be exceeded once we more fairly
account for the fast that many of these chemicals do not fall
exclusively in only one of the five groups.



[_INN: 0.77 [ alcohol | alkyl halide | aromatic | hydrocarbon | ester |
alcohol 1.000 0.000 0.000 0.000 0.000
alky! halide 0.000 0.831 0.069 0.006 0.094
aromatic 0.000 0.267 0.527 0.200 0.007
hydrocarbon 0.037 0.019 0.213 0.688 0.044
ester 0.047 0.147 0.000 0.018 0.788

Table 1: LCO confusion matrix for 1NN classification of compounds into functional classes. Each functional
class contained fifteen compounds with 10 or in a few cases 20 sniffs each. For a given test example, all other
examples of the same compound were withheld from the reference library (i.e. LCO = Leave-Chemical-Out).
Average correct LCO classification rate = 0.77.

|_SVM: 0.82 T alcohol [ alkyl halide | aromatic | hydrocarbon | ester |
alcohol 1.000 0.000 0.000 0.000 0.000
alkyl halide 0.013 0.688 0.062 0.000 0.237
aromatic 0.000 0.113 0.713 0.120 0.053
hydrocarbon 0.031 0.062 0.050 0.856 0.000
ester 0.059 0.100 0.000 0.000 0.841

Table 2: LCO confusion matrix for SVM trained one-vs-rest (kernel="poly 3 .1’ C=100). Average correct
rate = 0.821, total runtime = 868.9 secs. (No-holdout training rate = 0.921.)

_KFD: 0.79 [ alcohol [ alkyl halide | aromatic | hydrocarbon | ester

alcohol 1.000 0.000 0.000 0.000 0.000
alkyl halide 0.000 0.606 0.062 0.131 0.200
aromatic 0.067 0.047 0.687 0.133 0.067
hydrocarbon 0.025 0.050 0.075 0.850 0.000
ester 0.059 0.124 0.006 0.000 0.812

Table 3: LCO confusion matrix for KFD trained one-vs-rest (kernel="POLY 3 10’). Average correct rate =
0.792, total runtime = 1919.8 secs. (No-holdout training rate = 0.935.)

| _LFD: 0.80 [ alcohol | alkyl halide | aromatic | hydrocarbon [ ester ]

alcohol 0.931 0.056 0.000 0.000 0.013
alkyl halide 0.000 0.719 0.081 0.075 0.125
aromatic 0.007 0.027 0.713 0.133 0.120
hydrocarbon || 0.031 0.031 0.062 0.875 0.000
ester 0.076 0.165 0.006 0.000 0.753

Table 4: LCO confusion matrix for LFD trained one-vs-rest (i.e. KFD with kernel=’linear’). Average correct
rate = 0.799, total runtime = 17.4 secs. (No-holdout training rate = 0.927.)

| LFDp: 0.84 [ alcohol [ alkyl halide | aromatic | hydrocarbon | ester

alcohol 0.988 0.000 0.000 0.000 0.000
alkyl halide 0.000 0.831 0.069 0.006 0.000
aromatic 0.000 0.067 0.660 0.133 0.013
hydrocarbon || 0.000 0.006 0.138 0.831 0.019
ester 0.053 0.006 0.000 0.006 0.871

Table 5: LCO confusion matrix for LFD with pairwise voting. Average correct rate = 0.836. Note: rows do
not sum to 1 because deadlocks between the different pairwise classifiers are treated as “punts”.
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